**Fictitious Forces in Curvilinear Coordinates**

To quote Bullo and Lewis: "Only in exceptional circumstances can the configuration of Lagrangian system be described by a vector in a vector space. In the natural mathematical setting, the system's configuration space is described loosely as a curved space, or more accurately as a differentiable manifold."

Instead of Cartesian coordinates, when equations of motion are expressed in a curvilinear coordinate system, Christoffel symbols appear in the acceleration of a particle expressed in this coordinate system, as described below in more detail. Consider description of a particle motion from the viewpoint of an *inertial frame of reference* in curvilinear coordinates. Suppose the position of a point *P* in Cartesian coordinates is (*x*, *y*, *z*) and in curvilinear coordinates is (*q _{1}*,

*q*.

_{2}*q*). Then functions exist that relate these descriptions:

_{3}and so forth. (The number of dimensions may be larger than three.) An important aspect of such coordinate systems is the element of arc length that allows distances to be determined. If the curvilinear coordinates form an orthogonal coordinate system, the element of arc length *ds* is expressed as:

where the quantities *h _{k}* are called

*scale factors*. A change

*dq*in

_{k}*q*causes a displacement

_{k}*h*along the coordinate line for

_{k}dq_{k}*q*. At a point

_{k}*P*, we place unit vectors

**e**each tangent to a coordinate line of a variable

_{k}*q*. Then any vector can be expressed in terms of these basis vectors, for example, from an inertial frame of reference, the position vector of a moving particle

_{k}**r**located at time

*t*at position

*P*becomes:

where *q _{k}* is the vector dot product of

**r**and

**e**. The velocity

_{k}**v**of a particle at

*P*, can be expressed at

*P*as:

where *v _{k}* is the vector dot product of

**v**and

**e**, and over dots indicate time differentiation. The time derivatives of the basis vectors can be expressed in terms of the scale factors introduced above. for example:

_{k}- or, in general,

in which the coefficients of the unit vectors are the Christoffel symbols for the coordinate system. The general notation and formulas for the Christoffel symbols are:

and the symbol is zero when all the indices are different. Despite appearances to the contrary, the Christoffel symbols *do not form the components of a tensor*. For example, they are zero in Cartesian coordinates, but not in polar coordinates.

Using relations like this one,

which allows all the time derivatives to be evaluated. For example, for the velocity:

with the Γ-notation for the Christoffel symbols replacing the curly bracket notation. Using the same approach, the acceleration is then

Looking at the relation for acceleration, the first summation contains the time derivatives of velocity, which would be associated with acceleration if these were Cartesian coordinates, and the second summation (the one with Christoffel symbols) contains terms related to the way the unit vectors change with time.

Read more about this topic: Mechanics Of Planar Particle Motion

### Other articles related to "fictitious forces in curvilinear coordinates, fictitious forces, force":

**Fictitious Forces in Curvilinear Coordinates**- "State-of-motion" Versus "coordinate" Fictitious Forces

... was introduced between two terminologies, the

**fictitious forces**that vanish in an inertial frame of reference are called in this article the "state-of-motion"

**fictitious forces**and those that ... reference becomes where F is the net real

**force**on the particle ... No "state-of-motion"

**fictitious forces**are present because the frame is inertial, and "state-of-motion"

**fictitious forces**are zero in an inertial frame, by definition ...

### Famous quotes containing the words fictitious and/or forces:

“It is, indeed, at home that every man must be known by those who would make a just estimate either of his virtue or felicity; for smiles and embroidery are alike occasional, and the mind is often dressed for show in painted honour, and *fictitious* benevolence.”

—Samuel Johnson (1709–1784)

“True Shandeism, think what you will against it, opens the heart and lungs, and like all those affections which partake of its nature, it *forces* the blood and other vital fluids of the body to run freely thro’ its channels, and makes the wheel of life run long and chearfully round.”

—Laurence Sterne (1713–1768)