Meagre Set - Definition

Definition

Given a topological space X, a subset A of X is meagre if it can be expressed as the union of countably many nowhere dense subsets of X. Dually, a comeagre set is one whose complement is meagre, or equivalently, the intersection of countably many sets with dense interiors.

A subset B of X is nowhere dense if there is no neighbourhood on which B is dense: for any nonempty open set U in X, there is a nonempty open set V contained in U such that V and B are disjoint.

The complement of a nowhere dense set is a dense set, but not every dense set is of this form. More precisely, the complement of a nowhere dense set is a set with dense interior.

Read more about this topic:  Meagre Set

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)