Maxwell's Equations in Curved Spacetime - Electromagnetic Wave Equation

Electromagnetic Wave Equation

The nonhomogeneous electromagnetic wave equation in terms of the field tensor is modified from the special relativity form to

where Racbd is the covariant form of the Riemann tensor and is a generalization of the d'Alembertian operator for covariant derivatives. Using

Maxwell's source equations can be written in terms of the 4-potential as,

or, assuming the generalization of the Lorenz gauge in curved spacetime

where is the Ricci curvature tensor.

This the same form of the wave equation as in flat spacetime, except that the derivatives are replaced by covariant derivatives and there is an additional term proportional to the curvature. The wave equation in this form also bears some resemblance to the Lorentz force in curved spacetime where Aa plays the role of the 4-position.

Read more about this topic:  Maxwell's Equations In Curved Spacetime

Famous quotes containing the words electromagnetic wave, wave and/or equation:

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    “Justice” was done, and the President of the Immortals, in Æschylean phrase, had ended his sport with Tess. And the d’Urberville knights and dames slept on in their tombs unknowing. The two speechless gazers bent themselves down to the earth, as if in prayer, and remained thus a long time, absolutely motionless: the flag continued to wave silently. As soon as they had strength they arose, joined hands again, and went on.
    The End
    Thomas Hardy (1840–1928)

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)