Maxwell Relations - The Four Most Common Maxwell Relations

The Four Most Common Maxwell Relations

The four most common Maxwell relations are the equalities of the second derivatives of each of the four thermodynamic potentials, with respect to their thermal natural variable (temperature T; or entropy S) and their mechanical natural variable (pressure P; or volume V):

Maxwell's relations (common)

 \begin{align}
+\left(\frac{\partial T}{\partial V}\right)_S &=& -\left(\frac{\partial P}{\partial S}\right)_V &=& \frac{\partial^2 U }{\partial S \partial V}\\
+\left(\frac{\partial T}{\partial P}\right)_S &=& +\left(\frac{\partial V}{\partial S}\right)_P &=& \frac{\partial^2 H }{\partial S \partial P}\\
+\left(\frac{\partial S}{\partial V}\right)_T &=& +\left(\frac{\partial P}{\partial T}\right)_V &=& -\frac{\partial^2 A }{\partial T \partial V}\\
-\left(\frac{\partial S}{\partial P}\right)_T &=& +\left(\frac{\partial V}{\partial T}\right)_P &=& \frac{\partial^2 G }{\partial T \partial P}
\end{align}\,\!

where the potentials as functions of their natural thermal and mechanical variables are the internal energy U(S, V), Enthalpy H(S, P), Helmholtz free energy A(T, V) and Gibbs free energy G(T, P). The thermodynamic square can be used as a mnemonic to recall and derive these relations.

Read more about this topic:  Maxwell Relations

Famous quotes containing the words common, maxwell and/or relations:

    Society cannot share a common communication system so long as it is split into warring factions.
    Bertolt Brecht (1898–1956)

    Aw, it’s just like a woman. When the shootin’s all over and everything’s safe, they pass out.
    Griffin Jay, and Maxwell Shane (1905–1983)

    Society does not consist of individuals but expresses the sum of interrelations, the relations within which these individuals stand.
    Karl Marx (1818–1883)