Maturation Promoting Factor - Discovery

Discovery

In 1971, two independent teams of researchers (Yoshio Masui and Clement Markert, as well as Dennis Smith and Robert Ecker) found that frog oocytes arrested in G2 could be induced to enter M phase by microinjection of cytoplasm from oocytes that had been hormonally stimulated. Because the entry of oocytes into meiosis is frequently referred to as oocyte maturation, this cytoplasmic factor was called maturation promoting factor (MPF). Further studies showed, however, that the activity of MPF is not restricted to the entry of oocytes into meiosis. To the contrary, MPF is also present in somatic cells, where it induces entry into M phase of the mitotic cycle.

Evidence that a diffusible factor regulates the entry into mitosis had been previously obtained in 1966 using the slime mold Physarum polycephalum in which the nuclei of the multi-nucleate plasmodial form undergo synchronous mitoses. Fusing plasmodia whose cell cycles were out of phase with each other led to a synchronous mitosis in the next mitotic cycle. This result demonstrated that mitotic entry was controlled by a diffusible cytoplasmic factor and not by a "nuclear clock."

Read more about this topic:  Maturation Promoting Factor

Famous quotes containing the word discovery:

    He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one.
    Henry David Thoreau (1817–1862)

    It was one of those evenings when men feel that truth, goodness and beauty are one. In the morning, when they commit their discovery to paper, when others read it written there, it looks wholly ridiculous.
    Aldous Huxley (1894–1963)

    Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.
    Gottlob Frege (1848–1925)