Matrix (mathematics) - Definition

Definition

A matrix is a rectangular array of numbers or other mathematical objects, for which operations such as addition and multiplication are defined. Most commonly, a matrix over a field F is a rectangular array of scalars from F. Most of this article focuses on real and complex matrices, i.e., matrices whose elements are real numbers or complex numbers, respectively. More general types of entries are discussed below. For instance, this is a real matrix:

\mathbf{A} = \begin{bmatrix} -1.3 & 0.6 \\ 20.4 & 5.5 \\ 9.7 & -6.2 \end{bmatrix}.

The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal and vertical lines in a matrix are called rows and columns, respectively.

Read more about this topic:  Matrix (mathematics)

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)