Matrix (mathematics) - Definition

Definition

A matrix is a rectangular array of numbers or other mathematical objects, for which operations such as addition and multiplication are defined. Most commonly, a matrix over a field F is a rectangular array of scalars from F. Most of this article focuses on real and complex matrices, i.e., matrices whose elements are real numbers or complex numbers, respectively. More general types of entries are discussed below. For instance, this is a real matrix:

\mathbf{A} = \begin{bmatrix} -1.3 & 0.6 \\ 20.4 & 5.5 \\ 9.7 & -6.2 \end{bmatrix}.

The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal and vertical lines in a matrix are called rows and columns, respectively.

Read more about this topic:  Matrix (mathematics)

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)