Matrix (mathematics) - Abstract Algebraic Aspects and Generalizations

Abstract Algebraic Aspects and Generalizations

Matrices can be generalized in different ways. Abstract algebra uses matrices with entries in more general fields or even rings, while linear algebra codifies properties of matrices in the notion of linear maps. It is possible to consider matrices with infinitely many columns and rows. Another extension are tensors, which can be seen as higher-dimensional arrays of numbers, as opposed to vectors, which can often be realised as sequences of numbers, while matrices are rectangular or two-dimensional array of numbers. Matrices, subject to certain requirements tend to form groups known as matrix groups.

Read more about this topic:  Matrix (mathematics)

Famous quotes containing the words abstract, algebraic and/or aspects:

    The probability of learning something unusual from a newspaper is far greater than that of experiencing it; in other words, it is in the realm of the abstract that the more important things happen in these times, and it is the unimportant that happens in real life.
    Robert Musil (1880–1942)

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    I suppose an entire cabinet of shells would be an expression of the whole human mind; a Flora of the whole globe would be so likewise, or a history of beasts; or a painting of all the aspects of the clouds. Everything is significant.
    Ralph Waldo Emerson (1803–1882)