Markov Perfect Equilibrium - Definition

Definition

In extensive form games, and specifically in stochastic games, a Markov perfect equilibrium is a set of mixed strategies for each of the players which satisfy the following criteria:

  • The strategies have the Markov property of memorylessness, meaning that each player's mixed strategy can be conditioned only the state of the game. These strategies are called Markov reaction functions.
  • The state can only encode payoff-relevant information. This rules out strategies that depend on non-substantive moves by the opponent. It excludes strategies that depend on signals, negotiation, or cooperation between the players (e.g. cheap talk or contracts).
  • The strategies form a subgame perfect equilibrium of the game.

Read more about this topic:  Markov Perfect Equilibrium

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)