Magnetorheological Fluid - Recent Advances

Recent Advances

Recent studies which explore the effect of varying the aspect ratio of the ferromagnetic particles have shown several improvements over conventional MR fluids. Nanowire-based fluids show no sedimentation after qualitative observation over a period of three months. This observation has been attributed to a lower close-packing density due to decreased symmetry of the wires compared to spheres, as well as the structurally supportive nature of a nanowire lattice held together by remnant magnetization. Further, they show a different range of loading of particles (typically measured in either volume or weight fraction) than conventional sphere- or ellipsoid-based fluids. Conventional commercial fluids exhibit a typical loading of 30 to 90 wt%, while nanowire-based fluids show a percolation threshold of ~0.5 wt% (depending on the aspect ratio). They also show a maximum loading of ~35 wt%, since high aspect ratio particles exhibit a larger per particle excluded volume as well as inter-particle tangling as they attempt to rotate end-over-end, resulting in a limit imposed by high off-state apparent viscosity of the fluids. This new range of loadings suggest a new set of applications are possible which may have not been possible with conventional sphere-based fluids.

Newer studies have focused on dimorphic magnetorheological fluids, which are conventional sphere-based fluids in which a fraction of the spheres, typically 2 to 8 wt%, are replaced with nanowires. These fluids exhibit a much lower sedimentation rate than conventional fluids, yet exhibit a similar range of loading as conventional commercial fluids, making them also useful in existing high-force applications such as damping. Moreover, they also exhibit an improvement in apparent yield stress of 10% across those amounts of particle substitution.

Another way to increase the performance of magnetorheological fluids is to apply a pressure to them. In particular the properties in term of yield strength can be increased up to ten times in shear mode and up five times in flow mode . The motivation of this behaviour is the increase in the ferromagnetic particles friction, as described by the semiempirical magneto-tribological model by Zhang et al. Even though applying a pressure strongly improves the magnetorheological fluids behaviour, particular attention must be paid in terms of mechanical resistance and chemical compatibility of the sealing system used.

Read more about this topic:  Magnetorheological Fluid

Famous quotes containing the word advances:

    For dawn takes away a third part of your work, and advances a man on his journey, and advances him in his work.
    Hesiod (c. 8th century B.C.)

    If a man does not make new acquaintance as he advances through life, he will soon find himself left alone. A man, Sir, should keep his friendship in constant repair.
    Samuel Johnson (1709–1784)