Magnetic Amplifier - Applications

Applications

Magnetic amplifiers were important as modulation and control amplifiers in the early development of voice transmission by radio. A magnetic amplifier was used as voice modulator for a 2 kilowatt Alexanderson alternator, and magnetic amplifiers were used in the keying circuits of large high-frequency alternators used for radio communications. Magnetic amplifiers were also used to regulate the speed of Alexanderson alternators to maintain the accuracy of the transmitted radio frequency.

The ability to control large currents with small control power made magnetic amplifiers useful for control of lighting circuits, for stage lighting and for advertising signs. Saturable reactor amplifiers were used for control of power to industrial furnaces. Small magnetic amplifiers were used for radio tuning indicators, control of small motor and cooling fan speed, control of battery chargers.

Magnetic amplifiers were used extensively as the switching element in early switched-mode (SMPS) power supplies, as well as in lighting control. Semiconductor based solid-state switches have largely superseded them, though recently there has been some regained interest in using mag amps in compact and reliable switching power supplies. PC ATX power supplies often use mag amps for secondary side voltage regulation.

Magnetic amplifiers are still used in some arc welders.

Magnetic amplifier transformer cores designed specifically for switch mode power supplies are currently manufactured by several large electromagnetics companies, including Metglas and Mag-Inc.

Magnetic amplifiers can be used for measuring high DC-voltages without direct connection to the high voltage and are therefore still used in the HVDC-technique.

Magnetic amplifiers were used by locomotives to detect wheel slip, until replaced by Hall Effect current transducers. The cables from two traction motors passed through the core of the device. During normal operation the resultant flux was zero as both currents were the same and in opposite directions. The currents would differ during wheel slip, producing a resultant flux that acted as the Control winding, developing a voltage across a resistor in series with the AC winding which was sent to the wheel slip correction circuits.

Read more about this topic:  Magnetic Amplifier