LTI System Theory
Linear time-invariant system theory, commonly known as LTI system theory, comes from applied mathematics and has direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas. It investigates the response of a linear and time-invariant system to an arbitrary input signal. Trajectories of these systems are commonly measured and tracked as they move through time (e.g., an acoustic waveform), but in applications like image processing and field theory, the LTI systems also have trajectories in spatial dimensions. Thus these systems are also called linear translation-invariant to give the theory the most general reach. In the case of generic discrete-time (i.e., sampled) systems, linear shift-invariant is the corresponding term. A good example of LTI systems are electrical circuits that can be made up of resistors, capacitors and inductors.
Read more about LTI System Theory: Overview
Famous quotes containing the words system and/or theory:
“The intellect is vagabond, and our system of education fosters restlessness. Our minds travel when our bodies are forced to stay at home. We imitate; and what is imitation but the travelling of the mind?”
—Ralph Waldo Emerson (18031882)
“Lucretius
Sings his great theory of natural origins and of wise conduct; Plato
smiling carves dreams, bright cells
Of incorruptible wax to hive the Greek honey.”
—Robinson Jeffers (18871962)