Lower Bounds
Let s = 1. Then
for any finite point set {x1, ..., xN}.
Let s = 2. W. M. Schmidt proved that for any finite point set {x1, ..., xN},
where
For arbitrary dimensions s > 1, K.F. Roth proved that
for any finite point set {x1, ..., xN}. This bound is the best known for s > 3.
Read more about this topic: Low-discrepancy Sequence
Famous quotes containing the word bounds:
“How far men go for the material of their houses! The inhabitants of the most civilized cities, in all ages, send into far, primitive forests, beyond the bounds of their civilization, where the moose and bear and savage dwell, for their pine boards for ordinary use. And, on the other hand, the savage soon receives from cities iron arrow-points, hatchets, and guns, to point his savageness with.”
—Henry David Thoreau (18171862)
“At bounds of boundless void.”
—Samuel Beckett (19061989)



