Lossy Compression - Transform Coding

More generally, lossy compression can be thought of as an application of transform coding – in the case of multimedia data, perceptual coding: it transforms the raw data to a domain that more accurately reflects the information content. For example, rather than expressing a sound file as the amplitude levels over time, one may express it as the frequency spectrum over time, which corresponds more accurately to human audio perception.

While data reduction (compression, be it lossy or lossless) is a main goal of transform coding, it also allows other goals: one may represent data more accurately for the original amount of space – for example, in principle, if one starts with an analog or high-resolution digital master, an MP3 file of a given size should provide a better representation than a raw uncompressed audio in WAV or AIFF file of the same size. This is because uncompressed audio can only reduce file size by lowering bit rate or depth, whereas compressing audio can reduce size while maintaining bit rate and depth. This compression becomes a selective loss of the least significant data, rather than losing data across the board. Further, a transform coding may provide a better domain for manipulating or otherwise editing the data – for example, equalization of audio is most naturally expressed in the frequency domain (boost the bass, for instance) rather than in the raw time domain.

From this point of view, perceptual encoding is not essentially about discarding data, but rather about a better representation of data.

Another use is for backward compatibility and graceful degradation: in color television, encoding color via a luminance-chrominance transform domain (such as YUV) means that black-and-white sets display the luminance, while ignoring the color information.

Another example is chroma subsampling: the use of color spaces such as YIQ, used in NTSC, allow one to reduce the resolution on the components to accord with human perception – humans have highest resolution for black-and-white (luma), lower resolution for mid-spectrum colors like yellow and green, and lowest for red and blues – thus NTSC displays approximately 350 pixels of luma per scanline, 150 pixels of yellow vs. green, and 50 pixels of blue vs. red, which are proportional to human sensitivity to each component...

Read more about this topic:  Lossy Compression

Famous quotes containing the word transform:

    The source of our actions resides in an unconscious propensity to regard ourselves as the center, the cause, and the conclusion of time. Our reflexes and our pride transform into a planet the parcel of flesh and consciousness we are.
    E.M. Cioran (b. 1911)