Lorenz System - Derivation of The Lorenz Equations As A Model of Atmospheric Convection

Derivation of The Lorenz Equations As A Model of Atmospheric Convection

The Lorenz equations are derived from the Oberbeck-Boussinesq approximation to the equations describing fluid circulation in a shallow layer of fluid, heated uniformly from below and cooled uniformly from above. This fluid circulation is known as Rayleigh-BĂ©nard convection. The fluid is assumed to circulate in two dimensions (vertical and horizontal) with periodic rectangular boundary conditions. The partial differential equations modeling the system's stream function and temperature are subjected to a spectral Galerkin approximation: the hydrodynamic fields are expanded in Fourier series, which are then severely truncated to a single term for the stream function and two terms for the temperature. This reduces the model equations to a set of three coupled, nonlinear ordinary differential equations. A detailed derivation may be found, for example, in nonlinear dynamics texts. The Lorenz system is a reduced version of a larger system studied earlier by Barry Saltzman.

Read more about this topic:  Lorenz System

Famous quotes containing the words model and/or atmospheric:

    It has to be acknowledged that in capitalist society, with its herds of hippies, originality has become a sort of fringe benefit, a mere convention, accepted obsolescence, the Beatnik model being turned in for the Hippie model, as though strangely obedient to capitalist laws of marketing.
    Mary McCarthy (1912–1989)

    Nor has science sufficient humanity, so long as the naturalist overlooks the wonderful congruity which subsists between man and the world; of which he is lord, not because he is the most subtile inhabitant, but because he is its head and heart, and finds something of himself in every great and small thing, in every mountain stratum, in every new law of color, fact of astronomy, or atmospheric influence which observation or analysis lay open.
    Ralph Waldo Emerson (1803–1882)