Lorentz Group - Covering Groups

Covering Groups

In a previous section we constructed a homomorphism SL(2,C) SO+(1,3), which we called the spinor map. Since SL(2,C) is simply connected, it is the covering group of the restricted Lorentz group SO+(1,3). By restriction we obtain a homomorphism SU(2) SO(3). Here, the special unitary group SU(2), which is isomorphic to the group of unit norm quaternions, is also simply connected, so it is the covering group of the rotation group SO(3). Each of these covering maps are twofold covers in the sense that precisely two elements of the covering group map to each element of the quotient. One often says that the restricted Lorentz group and the rotation group are doubly connected. This means that the fundamental group of the each group is isomorphic to the two element cyclic group Z2.

Warning: in applications to quantum mechanics the special linear group SL(2, C) is sometimes called the Lorentz group.

Twofold coverings are characteristic of spin groups. Indeed, in addition to the double coverings

Spin+(1,3)=SL(2,C) SO+(1,3)
Spin(3)=SU(2) SO(3)

we have the double coverings

Pin(1,3) O(1,3)
Spin(1,3) SO(1,3)
Spin+(1,2) = SU(1,1) SO(1,2)

These spinorial double coverings are all closely related to Clifford algebras.

Read more about this topic:  Lorentz Group

Famous quotes containing the words covering and/or groups:

    We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the child’s life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.
    Selma H. Fraiberg (20th century)

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)