Simple Cavity
A common example of longitudinal modes are the light wavelengths produced by a laser. In the simplest case, the laser's optical cavity is formed by two opposed plane (flat) mirrors surrounding the gain medium (a plane-parallel or Fabry–Pérot cavity). The allowed modes of the cavity are those where the mirror separation distance L is equal to an exact multiple of half the wavelength, λ:
where q is an integer known as the mode order.
In practice, the separation distance of the mirrors L is usually much greater than the wavelength of light λ, so the relevant values of q are large (around 105 to 106). The frequency separation between any two adjacent modes, q and q+1, in a material that is transparent at the laser wavelength, are given (for an empty linear resonator of length L) by Δν:
where c is the speed of light and n is the refractive index of the material (note: n=1 in air).
Read more about this topic: Longitudinal Mode
Famous quotes containing the word simple:
“Historians desiring to write the actions of men, ought to set down the simple truth, and not say anything for love or hatred; also to choose such an opportunity for writing as it may be lawful to think what they will, and write what they think, which is a rare happiness of the time.”
—Sir Walter Raleigh (15521618)