Logics For Computability - Modal Logic For Computability

Modal Logic For Computability

Kleene's original realizability interpretation has received much attention among those who study connections between computability and logic. It was extended to full higher-order intuitionistic logic by Martin Hyland in 1982 who constructed the effective topos. In 2002, Steven Awodey, Lars Birkedal, and Dana Scott formulated a modal logic for computability which extended the usual realizability interpretation with two modal operators expressing the notion of being "computably true".

Read more about this topic:  Logics For Computability

Famous quotes containing the word logic:

    We want in every man a long logic; we cannot pardon the absence of it, but it must not be spoken. Logic is the procession or proportionate unfolding of the intuition; but its virtue is as silent method; the moment it would appear as propositions and have a separate value, it is worthless.
    Ralph Waldo Emerson (1803–1882)