In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory. This approach has been used successfully for (interactive) automated theorem proving. The first logical framework was Automath, however the name of the idea comes from the more widely known Edinburgh Logical Framework, LF. Several more recent proof tools like Isabelle (theorem prover) are based on this idea. Unlike a direct embedding, the logical framework approach allows many logics to be embedded in the same type system.
A logical framework is based on a general treatment of syntax, rules and proofs by means of a dependently typed lambda calculus. Syntax is treated in a style similar to, but more general than Per Martin-Löf's system of arities.
To describe a logical framework, one must provide the following:
- A characterization of the class of object-logics to be represented;
- An appropriate meta-language;
- A characterization of the mechanism by which object-logics are represented.
This is summarized by:
‘Framework = Language + Representation’.
Read more about Logical Framework: LF
Famous quotes containing the words logical and/or framework:
“The truth is, that common-sense, or thought as it first emerges above the level of the narrowly practical, is deeply imbued with that bad logical quality to which the epithet metaphysical is commonly applied; and nothing can clear it up but a severe course of logic.”
—Charles Sanders Peirce (18391914)
“Most young black females learn to be suspicious and critical of feminist thinking long before they have any clear understanding of its theory and politics.... Without rigorously engaging feminist thought, they insist that racial separatism works best. This attitude is dangerous. It not only erases the reality of common female experience as a basis for academic study; it also constructs a framework in which differences cannot be examined comparatively.”
—bell hooks (b. c. 1955)