Example: Logarithm of Rotations in The Plane
The rotations in the plane give a simple example. A rotation of angle α around the origin is represented by the 2×2-matrix
For any integer n, the matrix
is a logarithm of A. Thus, the matrix A has infinitely many logarithms. This corresponds to the fact that the rotation angle is only determined up to multiples of 2π.
In the language of Lie theory, the rotation matrices A are elements of the Lie group SO(2). The corresponding logarithms B are elements of the Lie algebra so(2), which consists of all skew-symmetric matrices. The matrix
is a generator of the Lie algebra so(2).
Read more about this topic: Logarithm Of A Matrix
Famous quotes containing the word plane:
“with the plane nowhere and her body taking by the throat
The undying cry of the void falling living beginning to be something
That no one has ever been and lived through screaming without enough air”
—James Dickey (b. 1923)