Example: Logarithm of Rotations in The Plane
The rotations in the plane give a simple example. A rotation of angle α around the origin is represented by the 2×2-matrix
For any integer n, the matrix
is a logarithm of A. Thus, the matrix A has infinitely many logarithms. This corresponds to the fact that the rotation angle is only determined up to multiples of 2π.
In the language of Lie theory, the rotation matrices A are elements of the Lie group SO(2). The corresponding logarithms B are elements of the Lie algebra so(2), which consists of all skew-symmetric matrices. The matrix
is a generator of the Lie algebra so(2).
Read more about this topic: Logarithm Of A Matrix
Famous quotes containing the word plane:
“Have you ever been up in your plane at night, alone, somewhere, 20,000 feet above the ocean?... Did you ever hear music up there?... Its the music a mans spirit sings to his heart, when the earths far away and there isnt any more fear. Its the high, fine, beautiful sound of an earth-bound creature who grew wings and flew up high and looked straight into the face of the future. And caught, just for an instant, the unbelievable vision of a free man in a free world.”
—Dalton Trumbo (19051976)