Proof of Loewner's Torus Inequality
Loewner's torus inequality can be proved most easily by using the computational formula for the variance,
Namely, the formula is applied to the probability measure defined by the measure of the unit area flat torus in the conformal class of the given torus. For the random variable X, one takes the conformal factor of the given metric with respect to the flat one. Then the expected value E(X 2) of X 2 expresses the total area of the given metric. Meanwhile, the expected value E(X) of X can be related to the systole by using Fubini's theorem. The variance of X can then be thought of as the isosystolic defect, analogous to the isoperimetric defect of Bonnesen's inequality. This approach therefore produces the following version of Loewner's torus inequality with isosystolic defect:
where ƒ is the conformal factor of the metric with respect to a unit area flat metric in its conformal class.
Read more about this topic: Loewner's Torus Inequality
Famous quotes containing the words proof of, proof and/or inequality:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)
“The doctrine of equality!... But there exists no more poisonous poison: for it seems to be preached by justice itself, while it is the end of justice.... Equality for equals, inequality for unequalsMthat would be the true voice of justice: and, what follows from it, Never make equal what is unequal.”
—Friedrich Nietzsche (18441900)