Formal Definition
A topological space X is said to be locally regular if and only if each point, x, of X has a neighbourhood that is regular under the subspace topology. Equivalently, a space X is locally regular if and only if the collection of all open sets that are regular under the subspace topology forms a base for the topology on X.
Read more about this topic: Locally Regular Space
Famous quotes containing the words formal and/or definition:
“On every formal visit a child ought to be of the party, by way of provision for discourse.”
—Jane Austen (17751817)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)