Localization of A Category - Categorical Definition

Categorical Definition

Let A be a category. A localization is an idempotent and coaugmented functor. A coaugmented functor is a pair (L,l) where L:A → A is an endofunctor and l:Id → L is a natural transformation from the identity functor to L (called the coaugmentation). A coaugmented functor is idempotent if, for every X, both maps L(lX),lL(X):L(X) → LL(X) are isomorphisms. It can be proven that in this case, both maps are equal.

Read more about this topic:  Localization Of A Category

Famous quotes containing the words categorical and/or definition:

    We do the same thing to parents that we do to children. We insist that they are some kind of categorical abstraction because they produced a child. They were people before that, and they’re still people in all other areas of their lives. But when it comes to the state of parenthood they are abruptly heir to a whole collection of virtues and feelings that are assigned to them with a fine arbitrary disregard for individuality.
    Leontine Young (20th century)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)