Introduction
When C is a complex algebraic curve, we know how to count multiplicities of zeroes and poles of meromorphic functions defined on it. However, when discussing curves defined over fields other than, we do not have access to the power of the complex analysis, and a replacement must be found in order to define multiplicities of zeroes and poles of rational functions defined on such curves. In this last case, we say that the germ of the regular function vanishes at if . This is in complete analogy with the complex case, in which the maximal ideal of the local ring at a point P is actually conformed by the germs of holomorphic functions vanishing at P.
Now, the valuation function on is given by
this valuation can naturally be extended to K(C) (which is the field of rational functions of C) because it is the field of fractions of . Hence the idea of having a simple zero at a point P is now complete: it will be a rational function such that its germ falls into, with d at most 1.
This has an algebraic resemblance with the concept of a uniformizing parameter (or just uniformizer) found in the context of discrete valuation rings in commutative algebra; a uniformizing parameter for the DVR (R, m) is just a generator of the maximal ideal m. The link comes from the fact that a local parameter at P will be a uniformizing parameter for the DVR (, ), whence the name.
Read more about this topic: Local Parameter
Famous quotes containing the word introduction:
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)
“Such is oftenest the young mans introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.”
—Henry David Thoreau (18171862)
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)