List of First-order Theories - Second Order Arithmetic

Second Order Arithmetic

Second-order arithmetic can refer to a first order theory (in spite of the name) with two types of variables, thought of as varying over integers and subsets of the integers. (There is also a theory of arithmetic in second order logic that is called second order arithmetic. It has only one model, unlike the corresponding theory in first order logic, which is incomplete.) The signature will typically be the signature 0, S, +, × of arithmetic, together with a membership relation ∈ between integers and subsets (though there are numerous minor variations). The axioms are those of Robinson arithmetic, together with axiom schemes of induction and comprehension.

There are many different subtheories of second order arithmetic that differ in which formulas are allowed in the induction and comprehension schemes. In order of increasing strength, five of the most common systems are

  • , Recursive Comprehension
  • , Weak König's lemma
  • , Arithmetical comprehension
  • , Arithmetical Transfinite Recursion
  • , comprehension

These are defined in detail in the articles on second order arithmetic and reverse mathematics.

Read more about this topic:  List Of First-order Theories

Famous quotes containing the words order and/or arithmetic:

    From cradle to grave this problem of running order through chaos, direction through space, discipline through freedom, unity through multiplicity, has always been, and must always be, the task of education, as it is the moral of religion, philosophy, science, art, politics and economy; but a boy’s will is his life, and he dies when it is broken, as the colt dies in harness, taking a new nature in becoming tame.
    Henry Brooks Adams (1838–1918)

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)