List of Cohomology Theories - Ordinary Homology Theories

Ordinary Homology Theories

These are the theories satisfying the "dimension axiom" of the Eilenberg–Steenrod axioms that the homology of a point vanishes in dimension other than 0. They are determined by an abelian coefficient group G, and denoted by H(X, G) (where G is sometimes omitted, especially if it is Z). Usually G is the integers, the rationals, the reals, the complex numbers, or the integers mod a prime p.

The cohomology functors of ordinary cohomology theories are represented by Eilenberg–MacLane spaces.

On simplicial complexes, these theories coincide with singular homology and cohomology.

Read more about this topic:  List Of Cohomology Theories

Famous quotes containing the words ordinary and/or theories:

    A man may appear learned, without talking Sentences; as in his ordinary Gesture he discovers he can Dance, tho’ he does not cut Capers.
    Richard Steele (1672–1729)

    Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.
    Thomas Henry Huxley (1825–95)