Light-dependent Reactions

The light-dependent reactions, or photoreduction, is the first stage of photosynthesis, the process by which plants capture and store energy from sunlight. In this process, light energy is converted into chemical energy, in the form of the energy-carrying molecules ATP and NADPH. In the light-independent reactions, the formed NADPH and ATP drive the reduction of CO2 to more useful organic compounds, such as glucose. However, although light-independent reactions are, by convention, also called dark reactions, they are not independent of the need of light, for they are driven by ATP and NADPH, products of light. They are often called the Calvin Cycle or C3 Cycle.

The light-dependent reactions take place on the thylakoid membrane inside a chloroplast. The inside of the thylakoid membrane is called the lumen, and outside the thylakoid membrane is the stroma, where the light-independent reactions take place. The thylakoid membrane contains some integral membrane protein complexes that catalyze the light reactions. There are four major protein complexes in the thylakoid membrane: Photosystem I (PSI), Photosystem II (PSII), Cytochrome b6f complex, and ATP synthase. These four complexes work together to ultimately create the products ATP and NADPH.

The two photosystems absorb light energy through pigments - primarily the chlorophylls, which are responsible for the green color of leaves. The light-dependent reactions begin in photosystem II. When a chlorophyll a molecule within the reaction center of PSII absorbs a photon, an electron in this molecule attains a higher energy level. Because this state of an electron is very unstable, the electron is transferred from one to another molecule creating a chain of redox reactions, called an electron transport chain (ETC). The electron flow goes from PSII to cytochrome b6f to PSI. In PSI, the electron gets the energy from another photon. The final electron acceptor is NADP. In oxygenic photosynthesis, the first electron donor is water, creating oxygen as a waste product. In anoxygenic photosynthesis various electron donors are used.

Cytochrome b6f and ATP synthase work together to create ATP. This process is called photophosphorylation, which occurs in two different ways. In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump protons from the stroma to the lumen. The proton gradient across the thylakoid membrane creates a proton-motive force, used by ATP synthase to form ATP. In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from not only PSII but also PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions.

The net-reaction of all light-dependent reactions in oxygenic photosynthesis is:

2H2O + 2NADP+ + 3ADP + 3Pi → O2 + 2NADPH + 3ATP

The two photosystems are protein complexes that absorb photons and are able to use this energy to create an electron transport chain. Photosystem I and II are very similar in structure and function. They use special proteins, called light-harvesting complexes, to absorb the photons with very high effectiveness. If a special pigment molecule in a photosynthetic reaction center absorbs a photon, an electron in this pigment attains the excited state and then is transferred to another molecule in the reaction center. This reaction, called photoinduced charge separation, is the start of the electron flow and is unique because it transforms light energy into chemical forms.

Read more about Light-dependent Reactions:  The Reaction Center, Photosynthetic Electron Transport Chains in Chloroplasts, Photosynthetic Electron Transport Chains in Bacteria, History

Famous quotes containing the word reactions:

    Cuteness in children is totally an adult perspective. The children themselves are unaware that the quality exists, let alone its desirability, until the reactions of grownups inform them.
    Leontine Young (20th century)