Lifted Condensation Level - Determining The LCL

Determining The LCL

The LCL can be either computed numerically, approximated by various formulas, or determined graphically using standard thermodynamic diagrams such as the Skew-T log-P diagram or the Tephigram. Nearly all of these formulations make use of the relationship between the LCL and the dew point, which is the temperature to which an air parcel needs to be cooled isobarically until its RH just reaches 100%. The LCL and dew point are similar, with one key difference: to find the LCL, an air parcel's pressure is decreased while it is lifted, causing it to expand, which in turn causes it to cool. To determine the dew point, in contrast, the pressure is kept constant, and the air parcel is cooled by bringing it into contact with a colder body (this is like the condensation you see on the outside of a glass full of a cold drink). Below the LCL, the dew point temperature is less than the actual ("dry bulb") temperature. As an air parcel is lifted, its pressure and temperature decrease. Its dew point temperature also decreases when the pressure is decreased, but not as quickly as its temperature decreases, so that if the pressure is decreased far enough, eventually the air parcel's temperature will be equal to the dew point temperature at that pressure. This point is the LCL; this is graphically depicted in the diagram.

Using this background, the LCL can be found on a standard thermodynamic diagram as follows:

  1. Start at the initial temperature (T) and pressure of the air parcel and follow the dry adiabatic lapse rate line upward (provided that the RH in the air parcel is less than 100%, otherwise it is already at or above LCL).
  2. From the initial dew point temperature (Td) of the parcel at its starting pressure, follow the line for the constant equilibrium mixing ratio (or "saturation mixing ratio") upward.
  3. The intersection of these two lines is the LCL.

Interestingly, there is actually no exact analytical formula for the LCL, since it is defined by an implicit equation without an exact solution. Normally an iterative procedure is used to determine a highly accurate solution for the LCL (i.e., an altitude is guessed, and the RH for a parcel lifted to that altitude is computed; if it is below 100%, then a higher altitude is taken as the next step in the iteration, or if it is above 100%, then a lower altitude is taken; this is repeated until the desired accuracy for the computed LCL is reached).

There are also many different ways to approximate the LCL, to various degrees of accuracy. The most well known and widely used among these is Espy's equation, which Espy formulated already in the early 19th century. His equation makes use of the relationship between the LCL and dew point temperature discussed above. In the Earth's atmosphere near the surface, the lapse rate for dry adiabatic lifting is about 9.8 K/km, and the lapse rate of the dew point is about 1.8 K/km (it varies from about 1.6-1.9 K/km). This gives the slopes of the curves shown in the diagram. The altitude where they intersect can be computed as the ratio between the difference in the initial temperature and initial dew point temperature (T-Td) to the difference in the slopes of the two curves. Since the slopes are the two lapse rates, their difference is about 8 K/km. Inverting this gives 0.125 km/K, or 125 m/K. Recognizing this, Espy pointed out that the LCL can be approximated as:


h_{LCL} = \frac{T - T_d}{\Gamma_d - \Gamma_{dew}} = 125 (T - T_d)

where h is height of the LCL (in meters), T is temperature in degrees Celsius (or kelvins), and Td is dew point temperature (likewise in degrees Celsius or kelvins, whichever is used for T). This formula is accurate to within about 1% for the LCL height under normal atmospheric conditions, but requires knowing the dew point temperature.

Another simple approximation for determining the LCL for moist air makes use of a rule-of-thumb relationship between the "dew point depression" (the temperature difference T-Td) and the RH, which is that the RH decreases by 5% for every degree (Celsius) increase in the dew point depression, starting at RH=100% when TTd = 0 (for more information, see dew point). Applying this directly in Espy's formula, however, results in a substantial overestimate of the LCL at lower temperatures. A correction for this is provided by Lawrence's formula:


h_{LCL} = (20 + \frac{T}{5}) (100 - RH)

where T is the temperature at the ground level in degrees Celsius, and RH is the ground level relative humidity in percent. This formula is very simple to use (so that you only need to know T and RH to estimate the LCL, even without a calculator), yet accurate to within about 10% for the LCL height under normal atmospheric conditions, provided RH>50% (it becomes inaccurate for drier air).

In addition to these simple approximations, several much more complex and more accurate approximations have been proposed in the scientific literature, for instance by Bolton (1980) and Inman (1969).

Read more about this topic:  Lifted Condensation Level

Famous quotes containing the words determining the and/or determining:

    I esteem it the happiness of this country that its settlers, whilst they were exploring their granted and natural rights and determining the power of the magistrate, were united by personal affection. Members of a church before whose searching covenant all rank was abolished, they stood in awe of each other, as religious men.
    Ralph Waldo Emerson (1803–1882)

    I esteem it the happiness of this country that its settlers, whilst they were exploring their granted and natural rights and determining the power of the magistrate, were united by personal affection. Members of a church before whose searching covenant all rank was abolished, they stood in awe of each other, as religious men.
    Ralph Waldo Emerson (1803–1882)