Liesegang Rings - Theories

Theories

Several different theories have been proposed to explain the formation of Liesegang rings. The chemist Wilhelm Ostwald in 1897 proposed a theory based on the idea that a precipitate is not formed immediately upon the concentration of the ions exceeding a solubility product, but a region of supersaturation occurs first. When the limit of stability of the supersaturation is reached, the precipitate forms, and a clear region forms ahead of the diffusion front because the precipitate that is below the solubility limit diffuses onto the precipitate. This was argued to be a critically flawed theory when it was shown that seeding the gel with a colloidal dispersion of the precipitate (which would arguably prevent any significant region of supersaturation) did not prevent the formation of the rings.

Another theory focuses on the adsorption of one or the other of the precipitating ions onto the colloidal particles of the precipitate which forms. If the particles are small, the absorption is large, diffusion is "hindered" and this somehow results in the formation of the rings.

Still another proposal, the "coagulation theory" states that the precipitate first forms as a fine colloidal dispersion, which then undergoes coagulation by an excess of the diffusing electrolyte and this somehow results in the formation of the rings.

Some more recent theories invoke an auto-catalytic step in the reaction that results in the formation of the precipitate. This would seem to contradict the notion that auto-catalytic reactions are, actually, quite rare in nature.

The solution of the diffusion equation with proper boundary conditions, and a set of good assumptions on supersaturation, adsorption, auto-catalysis, and coagulation alone, or in some combination, has not been done yet, it appears, at least in a way that makes a quantitative comparison with experiment possible.

A general theory based on Ostwald's 1897 theory has recently been proposed . It can account for several important features sometimes seen, such as revert and helical banding.

Read more about this topic:  Liesegang Rings

Famous quotes containing the word theories:

    Philosophers of science constantly discuss theories and representation of reality, but say almost nothing about experiment, technology, or the use of knowledge to alter the world. This is odd, because ‘experimental method’ used to be just another name for scientific method.... I hope [to] initiate a Back-to-Bacon movement, in which we attend more seriously to experimental science. Experimentation has a life of its own.
    Ian Hacking (b. 1936)

    Our books of science, as they improve in accuracy, are in danger of losing the freshness and vigor and readiness to appreciate the real laws of Nature, which is a marked merit in the ofttimes false theories of the ancients.
    Henry David Thoreau (1817–1862)

    Whatever practical people may say, this world is, after all, absolutely governed by ideas, and very often by the wildest and most hypothetical ideas. It is a matter of the very greatest importance that our theories of things that seem a long way apart from our daily lives, should be as far as possible true, and as far as possible removed from error.
    Thomas Henry Huxley (1825–95)