Lie Sphere Geometry - Lie Sphere Geometry in Space and Higher Dimensions - General Theory

General Theory

Lie sphere geometry in n-dimensions is obtained by replacing R3,2 (corresponding to the Lie quadric in n = 2 dimensions) by Rn + 1, 2. This is Rn + 3 equipped with the symmetric bilinear form

The Lie quadric Qn is again defined as the set of ∈ RPn+2 = P(Rn+1,2) with x · x = 0. The quadric parameterizes oriented (n – 1)-spheres in n-dimensional space, including hyperplanes and point spheres as limiting cases. Note that Qn is an (n + 1)-dimensional manifold (spheres are parameterized by their center and radius).

The incidence relation carries over without change: the spheres corresponding to points, ∈ Qn have oriented first order contact if and only if x · y = 0. The group of Lie transformations is now O(n + 1, 2) and the Lie transformations preserve incidence of Lie cycles.

The space of contact elements is a (2n – 1)-dimensional contact manifold Z2n – 1: in terms of the given choice of point spheres, these contact elements correspond to pairs consisting of a point in n-dimensional space (which may be the point at infinity) together with an oriented hyperplane passing through that point. The space Z2n – 1 is therefore isomorphic to the projectivized cotangent bundle of the n-sphere. This identification is not invariant under Lie transformations: in Lie invariant terms, Z2n – 1 is the space of (projective) lines on the Lie quadric.

Any immersed oriented hypersurface in n-dimensional space has a contact lift to Z2n – 1 determined by its oriented tangent spaces. There is no longer a preferred Lie cycle associated to each point: instead, there are n – 1 such cycles, corresponding to the curvature spheres in Euclidean geometry.

The problem of Apollonius has a natural generalization involving n + 1 hyperspheres in n dimensions.

Read more about this topic:  Lie Sphere Geometry, Lie Sphere Geometry in Space and Higher Dimensions

Famous quotes containing the words general and/or theory:

    Though of erect nature, man is far above the plants. For man’s superior part, his head, is turned toward the superior part of the world, and his inferior part is turned toward the inferior world; and therefore he is perfectly disposed as to the general situation of his body. Plants have the superior part turned towards the lower world, since their roots correspond to the mouth, and their inferior parts towards the upper world.
    Thomas Aquinas (c. 1225–1274)

    It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.
    Jean Baudrillard (b. 1929)