Lie Algebroid
In mathematics, Lie algebroids serve the same role in the theory of Lie groupoids that Lie algebras serve in the theory of Lie groups: reducing global problems to infinitesimal ones. Just as a Lie groupoid can be thought of as a "Lie group with many objects", a Lie algebroid is like a "Lie algebra with many objects".
More precisely, a Lie algebroid is a triple consisting of a vector bundle over a manifold, together with a Lie bracket on its module of sections and a morphism of vector bundles called the anchor. Here is the tangent bundle of . The anchor and the bracket are to satisfy the Leibniz rule:
where and is the derivative of along the vector field . It follows that
for all .
Read more about Lie Algebroid: Examples, Lie Algebroid Associated To A Lie Groupoid
Famous quotes containing the word lie:
“Love is a great thing. It is not by chance that in all times and practically among all cultured peoples love in the general sense and the love of a man for his wife are both called love. If love is often cruel or destructive, the reasons lie not in love itself, but in the inequality between people.”
—Anton Pavlovich Chekhov (18601904)