Legendre Chi Function

In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by


\chi_\nu(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^\nu}.

As such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm as

The Legendre chi function appears as the discrete fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.

The Legendre chi function is a special case of the Lerch transcendent, and is given by

Famous quotes containing the word function:

    The more books we read, the clearer it becomes that the true function of a writer is to produce a masterpiece and that no other task is of any consequence.
    Cyril Connolly (1903–1974)