Lebesgue Integration - Introduction

Introduction

The integral of a function f between limits a and b can be interpreted as the area under the graph of f. This is easy to understand for familiar functions such as polynomials, but what does it mean for more exotic functions? In general, what is the class of functions for which "area under the curve" makes sense? The answer to this question has great theoretical and practical importance.

As part of a general movement toward rigour in mathematics in the nineteenth century, attempts were made to put the integral calculus on a firm foundation. The Riemann integral, proposed by Bernhard Riemann (1826–1866), is a broadly successful attempt to provide such a foundation. Riemann's definition starts with the construction of a sequence of easily-calculated areas which converge to the integral of a given function. This definition is successful in the sense that it gives the expected answer for many already-solved problems, and gives useful results for many other problems.

However, Riemann integration does not interact well with taking limits of sequences of functions, making such limiting processes difficult to analyze. This is of prime importance, for instance, in the study of Fourier series, Fourier transforms and other topics. The Lebesgue integral is better able to describe how and when it is possible to take limits under the integral sign. The Lebesgue definition considers a different class of easily-calculated areas than the Riemann definition, which is the main reason the Lebesgue integral is better behaved. The Lebesgue definition also makes it possible to calculate integrals for a broader class of functions. For example, the Dirichlet function, which is 0 where its argument is irrational and 1 otherwise, has a Lebesgue integral, but it does not have a Riemann integral.

Lebesgue's approach to integration was summarized in a letter to Paul Montel. He writes:

I have to pay a certain sum, which I have collected in my pocket. I take the bills and coins out of my pocket and give them to the creditor in the order I find them until I have reached the total sum. This is the Riemann integral. But I can proceed differently. After I have taken all the money out of my pocket I order the bills and coins according to identical values and then I pay the several heaps one after the other to the creditor. This is my integral.

The insight is that one should be able to rearrange the values of a function freely while preserving the value of the integral. This process of rearrangement can convert a very pathological function into one which is "nice" from the point of view of integration, and thus allows for such pathological functions to be integrated.

Read more about this topic:  Lebesgue Integration

Famous quotes containing the word introduction:

    The role of the stepmother is the most difficult of all, because you can’t ever just be. You’re constantly being tested—by the children, the neighbors, your husband, the relatives, old friends who knew the children’s parents in their first marriage, and by yourself.
    —Anonymous Stepparent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)

    For better or worse, stepparenting is self-conscious parenting. You’re damned if you do, and damned if you don’t.
    —Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)

    For the introduction of a new kind of music must be shunned as imperiling the whole state; since styles of music are never disturbed without affecting the most important political institutions.
    Plato (c. 427–347 B.C.)