Lean Burn - Honda Lean Burn Systems

Honda Lean Burn Systems

One of the newest lean-burn technologies available in automobiles currently in production uses very precise control of fuel injection, a strong air-fuel swirl created in the combustion chamber, a new linear air-fuel sensor (LAF type O2 sensor) and a lean-burn NOx catalyst to further reduce the resulting NOx emissions that increase under "lean-burn" conditions and meet NOx emissions requirements.

This stratified-charge approach to lean-burn combustion means that the air-fuel ratio isn't equal throughout the cylinder. Instead, precise control over fuel injection and intake flow dynamics allows a greater concentration of fuel closer to the spark plug tip (richer), which is required for successful ignition and flame spread for complete combustion. The remainder of the cylinders' intake charge is progressively leaner with an overall average air:fuel ratio falling into the lean-burn category of up to 22:1.

The older Honda engines that used lean burn (not all did) accomplished this by having a parallel fuel and intake system that fed a pre-chamber the "ideal" ratio for initial combustion. This burning mixture was then opened to the main chamber where a much larger and leaner mix then ignited to provide sufficient power. During the time this design was in production this system (CVCC, Compound Vortex Controlled Combustion) primarily allowed lower emissions without the need for a catalytic converter. These were carbureted engines and the relative "imprecise" nature of such limited the MPG abilities of the concept that now under MPI (Multi-Port fuel Injection) allows for higher MPG too.

The newer Honda stratified charge (lean burn engines) operate on air-fuel ratios as high as 22:1. The amount of fuel drawn into the engine is much lower than a typical gasoline engine, which operates at 14.7:1—the chemical stoichiometric ideal for complete combustion when averaging gasoline to the petrochemical industries' accepted standard of C6H8.

This lean-burn ability by the necessity of the limits of physics, and the chemistry of combustion as it applies to a current gasoline engine must be limited to light load and lower RPM conditions. A "top" speed cut-off point is required since leaner gasoline fuel mixtures burn slower and for power to be produced combustion must be "complete" by the time the exhaust valve opens.

Read more about this topic:  Lean Burn

Famous quotes containing the words lean, burn and/or systems:

    Study me then, you who shall lovers be
    At the next world, that is, at the next spring:
    For I am every dead thing,
    In whom love wrought new alchemy.
    For his art did express
    A quintessence even from nothingness,
    From dull privations, and lean emptiness:
    He ruined me, and I am re-begot
    Of absence, darkness, death: things which are not.
    John Donne (1572–1631)

    She always had to burn a light
    Beside her attic bed at night.
    Robert Frost (1874–1963)

    The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Gray’s Anatomy.
    —J.G. (James Graham)