Leakage Inductance - Applications of Leakage Inductance

Applications of Leakage Inductance

Leakage inductance can be an undesirable property, as it causes the voltage to change with loading. In many cases it is useful. Leakage inductance has the useful effect of limiting the current flows in a transformer (and load) without itself dissipating power (accepting the usual non-ideal transformer losses). Transformers are generally designed to have a specific value of leakage inductance such that the leakage reactance created by this inductance is a specific value at the desired frequency of operation.

Power distribution transformers are usually designed with a leakage reactance of between 1% and 10% of the full load impedance. If the load is resistive and the leakage reactance is small (<10%) the output voltage will not drop by more than 0.5% at full load, ignoring other resistances and losses.

Leakage reactance is also used for some negative resistance devices, such as neon signs, where a transformer action is required as well as current limiting. In this case the leakage reactance is usually 100% of full load impedance, so even if the transformer is shorted out it will not be damaged. Without the leakage inductance, the negative resistance characteristic of these gas discharge lamps would cause them to conduct excessive current and be destroyed.

Transformers with variable leakage inductance are used to control the current in arc welding sets. In these cases, the leakage inductance limits the current flow to the desired magnitude.

Read more about this topic:  Leakage Inductance