Law of Total Variance

In probability theory, the law of total variance or variance decomposition formula, also known by the acronym EVVE (or Eve's law), states that if X and Y are random variables on the same probability space, and the variance of Y is finite, then

Some writers on probability call this the "conditional variance formula". In language perhaps better known to statisticians than to probabilists, the two terms are the "unexplained" and the "explained component of the variance" (cf. fraction of variance unexplained, explained variation).

There is a general variance decomposition formula for c2 components (see below) . For example, with two conditioning random variables:

which follows from the law of total conditional variance:

Note that the conditional expected value E( Y | X ) is a random variable in its own right, whose value depends on the value of X. Notice that the conditional expected value of Y given the event X = x is a function of x (this is where adherence to the conventional and rigidly case-sensitive notation of probability theory becomes important!). If we write E( Y | X = x ) = g(x) then the random variable E( Y | X ) is just g(X). Similar comments apply to the conditional variance.

Read more about Law Of Total Variance:  Proof, General Variance Decomposition Applicable To Dynamic Systems, The Square of The Correlation and Explained (or Informational) Variation, Higher Moments

Famous quotes containing the words law of, law, total and/or variance:

    But what is classification but the perceiving that these objects are not chaotic, and are not foreign, but have a law which is also the law of the human mind?
    Ralph Waldo Emerson (1803–1882)

    Judge—A law student who marks his own examination-papers.
    —H.L. (Henry Lewis)

    Unlike Descartes, we own and use our beliefs of the moment, even in the midst of philosophizing, until by what is vaguely called scientific method we change them here and there for the better. Within our own total evolving doctrine, we can judge truth as earnestly and absolutely as can be, subject to correction, but that goes without saying.
    Willard Van Orman Quine (b. 1908)

    There is an untroubled harmony in everything, a full consonance in nature; only in our illusory freedom do we feel at variance with it.
    Fyodor Tyutchev (1803–1873)