Lattice-based Cryptography - Mathematical Background

Mathematical Background

A lattice L is a set of points in the n-dimensional Euclidean space Rn with a strong periodicity property. A basis of L is a set of vectors such that any element of L is uniquely represented as their linear combination with integer coefficients. When n is at least 2, each lattice has infinitely many different bases.

Mathematical problems are used to construct a cryptography system. These problems are usually hard to solve unless one has extra information. Mathematical problems based on lattices are the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). SVP: Given a basis of a lattice, find the shortest vector in the lattice. CVP: Given a basis of a lattice and a vector not in the lattice, find the lattice vector with the least distance to the first vector. These problems are normally hard to solve. There are algorithms to solve these problems with a good basis.

Lattice basis reduction is a transformation of an integer lattice basis in order to find a basis with short, nearly orthogonal vectors. If one can compute such a lattice basis, the CVP and SVP problems are easy to solve. A good basis reduction algorithm is the LLL algorithm.

Read more about this topic:  Lattice-based Cryptography

Famous quotes containing the words mathematical and/or background:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    Pilate with his question “What is truth?” is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.
    Friedrich Nietzsche (1844–1900)