Laser Beam Profiler - Measurements - Beam Divergence

Beam Divergence

The beam divergence of a laser beam is a measure for how fast the beam expands far from the beam waist. It is usually defined as the derivative of the beam radius with respect to the axial position in the far field, i.e., in a distance from the beam waist which is much larger than the Rayleigh length. This definition yields a divergence half-angle. (Sometimes, full angles are used in the literature; these are twice as large.) For a diffraction-limited Gaussian beam, the beam divergence is λ/(πw0), where λ is the wavelength (in the medium) and w0 the beam radius (radius with 1/e2 intensity) at the beam waist. A large beam divergence for a given beam radius corresponds to poor beam quality. A low beam divergence can be important for applications such as pointing or free-space optical communications. Beams with very small divergence, i.e., with approximately constant beam radius over significant propagation distances, are called collimated beams. For the measurement of beam divergence, one usually measures the beam radius at different positions, using e.g. a beam profiler. It is also possible to derive the beam divergence from the complex amplitude profile of the beam in a single plane: spatial Fourier transforms deliver the distribution of transverse spatial frequencies, which are directly related to propagation angles. See US Laser Corps application note for a tutorial on how to measure the laser beam divergence with a lens and CCD camera.

Read more about this topic:  Laser Beam Profiler, Measurements

Famous quotes containing the word beam:

    What do we plant when we plant the tree?
    We plant the ship that will cross the sea,
    We plant the mast to carry the sails,
    We plant the planks to withstand the gales—
    The keel, the keelson, and beam and knee—
    We plant the ship when we plant the tree.
    Henry Abbey (1842–1911)