Large Numbers - Systematically Creating Ever Faster Increasing Sequences

Systematically Creating Ever Faster Increasing Sequences

Given a strictly increasing integer sequence/function (n≥1) we can produce a faster growing sequence (where the superscript n denotes the nth functional power). This can be repeated any number of times by letting, each sequence growing much faster than the one before it. Then we could define, which grows much faster than any for finite k (here ω is the first infinite ordinal number, representing the limit of all finite numbers k). This is the basis for the fast-growing hierarchy of functions, in which the indexing subscript is extended to ever-larger ordinals.

For example, starting with f0(n) = n + 1:

  • f1(n) = f0n(n) = n + n = 2n
  • f2(n) = f1n(n) = 2nn > (2 ↑) n for n ≥ 2 (using Knuth up-arrow notation)
  • f3(n) = f2n(n) > (2 ↑)n n ≥ 2 ↑2 n for n ≥ 2.
  • fk+1(n) > 2 ↑k n for n ≥ 2, k < ω.
  • fω(n) = fn(n) > 2 ↑n - 1 n > 2 ↑n − 2 (n + 3) − 3 = A(n, n) for n ≥ 2, where A is the Ackermann function (of which fω is a unary version).
  • fω+1(64) > fω64(6) > Graham's number (= g64 in the sequence defined by g0 = 4, gk+1 = 3 ↑gk 3).
    • This follows by noting fω(n) > 2 ↑n - 1 n > 3 ↑n - 2 3 + 2, and hence fω(gk + 2) > gk+1 + 2.
  • fω(n) > 2 ↑n - 1 n = (2 → nn-1) = (2 → nn-1 → 1) (using Conway chained arrow notation)
  • fω+1(n) = fωn(n) > (2 → nn-1 → 2) (because if gk(n) = X → nk then X → nk+1 = gkn(1))
  • fω+k(n) > (2 → nn-1 → k+1) > (nnk)
  • fω2(n) = fω+n(n) > (nnn) = (nnn→ 1)
  • fω2+k(n) > (nnnk)
  • fω3(n) > (nnnn)
  • fωk(n) > (nn → ... → nn) (Chain of k+1 n's)
  • fω2(n) = fωn(n) > (nn → ... → nn) (Chain of n+1 n's)

Read more about this topic:  Large Numbers

Famous quotes containing the words creating, faster and/or increasing:

    Perestroika basically is creating material incentives for the individual. Some of the comrades deny that, but I can’t see it any other way. In that sense human nature kinda goes backwards. It’s a step backwards. You have to realize the people weren’t quite ready for a socialist production system.
    Gus Hall (b. 1910)

    Love’s heralds should be thoughts,
    Which ten times faster glides than the sun’s beams,
    Driving back shadows over low’ring hills.
    William Shakespeare (1564–1616)

    The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as “Is your wife having natural childbirth or is she planning to be knocked out?” But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.
    Jean Marzollo (20th century)