Laplacian Matrix - Definition

Definition

Given a simple graph G with n vertices, its Laplacian matrix is defined as:


L = D - A.

That is, it is the difference of the degree matrix D and the adjacency matrix A of the graph. In the case of directed graphs, either the indegree or outdegree might be used, depending on the application.

From the definition follows that:

\ell_{i,j}:=
\begin{cases}
\deg(v_i) & \mbox{if}\ i = j \\
-1 & \mbox{if}\ i \neq j\ \mbox{and}\ v_i \mbox{ is adjacent to } v_j \\
0 & \mbox{otherwise}
\end{cases}

where deg(vi) is degree of the vertex i.

The normalized Laplacian matrix is defined as:

\ell_{i,j}:=
\begin{cases}
1 & \mbox{if}\ i = j\ \mbox{and}\ \deg(v_i) \neq 0\\
-\frac{1}{\sqrt{\deg(v_i)\deg(v_j)}} & \mbox{if}\ i \neq j\ \mbox{and}\ v_i \mbox{ is adjacent to } v_j \\
0 & \mbox{otherwise}.
\end{cases}

Read more about this topic:  Laplacian Matrix

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)