Statement of The Theorem
Let G = A∗B be the free product of groups A and B and let H ≤ G be a subgroup of G. Then there exist a family (Ai)i ∈ I of subgroups Ai ≤ A, a family (Bj)j ∈ J of subgroups Bj ≤ B, families gi, i ∈ I and fj, j ∈ J of elements of G, and a subset X ⊆ G such that
This means that X freely generates a subgroup of G isomorphic to the free group F(X) with free basis X and that, moreover, giAigi−1, fjBjfj−1 and X generate H in G as a free product of the above form.
There is a generalization of this to the case of free products with arbitrarily many factors. Its formulation is:
If H is a subgroup of ∗i∈IGi = G, then
where X ⊆ G and J is some index set and gj ∈ G and each Hj is a subgroup of some Gi.
Read more about this topic: Kurosh Subgroup Theorem
Famous quotes containing the words statement of, statement and/or theorem:
“One is apt to be discouraged by the frequency with which Mr. Hardy has persuaded himself that a macabre subject is a poem in itself; that, if there be enough of death and the tomb in ones theme, it needs no translation into art, the bold statement of it being sufficient.”
—Rebecca West (18921983)
“No statement about God is simply, literally true. God is far more than can be measured, described, defined in ordinary language, or pinned down to any particular happening.”
—David Jenkins (b. 1925)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)