Statement of The Theorem
Let G = A∗B be the free product of groups A and B and let H ≤ G be a subgroup of G. Then there exist a family (Ai)i ∈ I of subgroups Ai ≤ A, a family (Bj)j ∈ J of subgroups Bj ≤ B, families gi, i ∈ I and fj, j ∈ J of elements of G, and a subset X ⊆ G such that
This means that X freely generates a subgroup of G isomorphic to the free group F(X) with free basis X and that, moreover, giAigi−1, fjBjfj−1 and X generate H in G as a free product of the above form.
There is a generalization of this to the case of free products with arbitrarily many factors. Its formulation is:
If H is a subgroup of ∗i∈IGi = G, then
where X ⊆ G and J is some index set and gj ∈ G and each Hj is a subgroup of some Gi.
Read more about this topic: Kurosh Subgroup Theorem
Famous quotes containing the words statement of the, statement of, statement and/or theorem:
“Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individuals sovereignty.”
—Mario Vargas Llosa (b. 1936)
“Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. I dont have any whisky, may be a fact but it is not a truth.”
—William Burroughs (b. 1914)
“If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.”
—J.L. (John Langshaw)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)