Kline Sphere Characterization

In mathematics, a Kline sphere characterization, named after John Robert Kline, is a topological characterization of a two-dimensional sphere in terms of what sort of subset separates it. Its proof was one of the first notable accomplishments of R.H. Bing.

A simple closed curve in a two-dimensional sphere (for instance, its equator) separates the sphere into two pieces upon removal. If one removes a pair of points from a sphere, however, the remainder is connected. Kline's sphere characterization states that the converse is true: If a nondegenerate locally connected metric continuum is separated by any simple closed curve but by no pair of points, then it is a two-dimensional sphere.

Famous quotes containing the word sphere:

    Men are rewarded for learning the practice of violence in virtually any sphere of activity by money, admiration, recognition, respect, and the genuflection of others honoring their sacred and proven masculinity. In male culture, police are heroic and so are outlaws; males who enforce standards are heroic and so are those who violate them.
    Andrea Dworkin (b. 1946)