Kline Sphere Characterization

In mathematics, a Kline sphere characterization, named after John Robert Kline, is a topological characterization of a two-dimensional sphere in terms of what sort of subset separates it. Its proof was one of the first notable accomplishments of R.H. Bing.

A simple closed curve in a two-dimensional sphere (for instance, its equator) separates the sphere into two pieces upon removal. If one removes a pair of points from a sphere, however, the remainder is connected. Kline's sphere characterization states that the converse is true: If a nondegenerate locally connected metric continuum is separated by any simple closed curve but by no pair of points, then it is a two-dimensional sphere.

Famous quotes containing the word sphere:

    Wherever the State touches the personal life of the infant, the child, the youth, or the aged, helpless, defective in mind, body or moral nature, there the State enters “woman’s peculiar sphere,” her sphere of motherly succor and training, her sphere of sympathetic and self-sacrificing ministration to individual lives.
    Anna Garlin Spencer (1851–1931)