Extension Operators and Kleisli Triples
Composition of Kleisli arrows can be expressed succinctly by means of the extension operator (-)* : Hom(X, TY) → Hom(TX, TY). Given a monad 〈T, η, μ〉over a category C and a morphism f : X → TY let
Composition in the Kleisli category CT can then be written
The extension operator satisfies the identities:
where f : X → TY and g : Y → TZ. It follows trivially from these properties that Kleisli composition is associative and that ηX is the identity.
In fact, to give a monad is to give a Kleisli triple, i.e.
- A function ;
- For each object in, a morphism ;
- For each morphism in, a morphism
such that the above three equations for extension operators are satisfied.
Read more about this topic: Kleisli Category
Famous quotes containing the word extension:
“The motive of science was the extension of man, on all sides, into Nature, till his hands should touch the stars, his eyes see through the earth, his ears understand the language of beast and bird, and the sense of the wind; and, through his sympathy, heaven and earth should talk with him. But that is not our science.”
—Ralph Waldo Emerson (18031882)
