Kleisli Category - Extension Operators and Kleisli Triples

Extension Operators and Kleisli Triples

Composition of Kleisli arrows can be expressed succinctly by means of the extension operator (-)* : Hom(X, TY) → Hom(TX, TY). Given a monad 〈T, η, μ〉over a category C and a morphism f : XTY let

Composition in the Kleisli category CT can then be written

The extension operator satisfies the identities:

\begin{align}\eta_X^* &= \mathrm{id}_{TX}\\
f^*\circ\eta_X &= f\\
(g^*\circ f)^* &= g^* \circ f^*\end{align}

where f : XTY and g : YTZ. It follows trivially from these properties that Kleisli composition is associative and that ηX is the identity.

In fact, to give a monad is to give a Kleisli triple, i.e.

  • A function ;
  • For each object in, a morphism ;
  • For each morphism in, a morphism

such that the above three equations for extension operators are satisfied.

Read more about this topic:  Kleisli Category

Famous quotes containing the word extension:

    Slavery is founded in the selfishness of man’s nature—opposition to it, is [in?] his love of justice.... Repeal the Missouri compromise—repeal all compromises—repeal the declaration of independence—repeal all past history, you still can not repeal human nature. It still will be the abundance of man’s heart, that slavery extension is wrong; and out of the abundance of his heart, his mouth will continue to speak.
    Abraham Lincoln (1809–1865)