In computational geometry, Klee's measure problem is the problem of determining how efficiently the measure of a union of (multidimensional) rectangular ranges can be computed. Here, a d-dimensional rectangular range is defined to be a cartesian product of d intervals of real numbers, which is a subset of Rd.
The problem is named after Victor Klee, who gave an algorithm for computing the length of a union of intervals (the case d = 1) which was later shown to be optimally efficient in the sense of computational complexity theory. The computational complexity of computing the area of a union of 2-dimensional rectangular ranges is now also known, but the case d ≥ 3 remains an open problem.
Read more about Klee's Measure Problem: History and Algorithms, Current Status
Famous quotes containing the words measure and/or problem:
“As soon as man began considering himself the source of the highest meaning in the world and the measure of everything, the world began to lose its human dimension, and man began to lose control of it.”
—Václav Havel (b. 1936)
“To make a good salad is to be a brilliant diplomatistthe problem is entirely the same in both cases. To know exactly how much oil one must put with ones vinegar.”
—Oscar Wilde (18541900)