Definition
The Kervaire invariant is the Arf invariant of the quadratic form determined by the framing on the middle-dimensional Z/2Z-coefficient homology group
- q : H2m+1(M;Z/2Z) Z/2Z,
and is thus sometimes called the Arf–Kervaire invariant. The quadratic form (properly, skew-quadratic form) is a quadratic refinement of the usual ε-symmetric form on the middle dimensional homology of an (unframed) even-dimensional manifold; the framing yields the quadratic refinement.
The quadratic form q can be defined by algebraic topology using functional Steenrod squares, and geometrically via the self-intersections of immersions determined by the framing, or by the triviality/non-triviality of the normal bundles of embeddings (for ) and the mod 2 Hopf invariant of maps (for ).
Read more about this topic: Kervaire Invariant
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)