Definition
The Kervaire invariant is the Arf invariant of the quadratic form determined by the framing on the middle-dimensional Z/2Z-coefficient homology group
- q : H2m+1(M;Z/2Z) Z/2Z,
and is thus sometimes called the Arf–Kervaire invariant. The quadratic form (properly, skew-quadratic form) is a quadratic refinement of the usual ε-symmetric form on the middle dimensional homology of an (unframed) even-dimensional manifold; the framing yields the quadratic refinement.
The quadratic form q can be defined by algebraic topology using functional Steenrod squares, and geometrically via the self-intersections of immersions determined by the framing, or by the triviality/non-triviality of the normal bundles of embeddings (for ) and the mod 2 Hopf invariant of maps (for ).
Read more about this topic: Kervaire Invariant
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)