Kepler's Laws of Planetary Motion - Computing Position As A Function of Time

Computing Position As A Function of Time

Kepler used his two first laws for computing the position of a planet as a function of time. His method involves the solution of a transcendental equation called Kepler's equation.

The procedure for calculating the heliocentric polar coordinates (r,θ) to a planetary position as a function of the time t since perihelion, and the mean motion n = 2π/P, is the following four steps.

1. Compute the mean anomaly
2. Compute the eccentric anomaly E by solving Kepler's equation:
3. Compute the true anomaly θ by the equation:
4. Compute the heliocentric distance r from the first law:

The important special case of circular orbit, ε = 0, gives simply θ = E = M. Because the uniform circular motion was considered to be normal, a deviation from this motion was considered an anomaly.

The proof of this procedure is shown below.

Read more about this topic:  Kepler's Laws Of Planetary Motion

Famous quotes containing the words position, function and/or time:

    Your views are now my own.
    Marvin Cohen, U.S. author and humorist.

    In conversation, after having taken a strong position in an argument and heard a complete refutation of his position.

    My function in life is not to be a politician in Parliament: it is to get something done.
    Bernadette Devlin (b. 1947)

    Every time a woman makes herself laugh at her husband’s often-told jokes she betrays him. The man who looks at his woman and says “What would I do without you?” is already destroyed.
    Germaine Greer (b. 1939)