Statement
Kakutani's theorem states:
- Let S be a non-empty, compact and convex subset of some Euclidean space Rn. Let φ: S → 2S be a set-valued function on S with a closed graph and the property that φ(x) is non-empty and convex for all x ∈ S. Then φ has a fixed point.
When we say that the graph of is closed, we mean that for all sequences and such that, and for all, we have .
Read more about this topic: Kakutani Fixed-point Theorem
Famous quotes containing the word statement:
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“Children should know there are limits to family finances or they will confuse we cant afford that with they dont want me to have it. The first statement is a realistic and objective assessment of a situation, while the other carries an emotional message.”
—Jean Ross Peterson (20th century)
“The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.”
—Nicholson Baker (b. 1957)