Kakutani Fixed-point Theorem - Statement

Statement

Kakutani's theorem states:

Let S be a non-empty, compact and convex subset of some Euclidean space Rn. Let φ: S → 2S be a set-valued function on S with a closed graph and the property that φ(x) is non-empty and convex for all x ∈ S. Then φ has a fixed point.

When we say that the graph of is closed, we mean that for all sequences and such that, and for all, we have .

Read more about this topic:  Kakutani Fixed-point Theorem

Famous quotes containing the word statement:

    If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.
    —J.L. (John Langshaw)

    Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.
    Charles Sanders Peirce (1839–1914)

    After the first powerful plain manifesto
    The black statement of pistons, without more fuss
    But gliding like a queen, she leaves the station.
    Stephen Spender (1909–1995)