Julius Rebek - Self-replication

Self-replication

In 1990, these studies culminated in a synthetic, self-complementary that acted as a template for its own formation. It showed autocatalysis based on molecular recognition and was the first synthetic system to show a primitive sign of life: self-replication. "Self-replicating system. Tjivikua, T., Ballester, P., Rebek, J., Jr. J. Am. Chem. Soc. 1990, 112:1249.". http://pubs.acs.org/doi/abs/10.1021/ja00159a057?journalCode=jacsat&quickLinkVolume=112&quickLinkPage=1249&volume=112. Retrieved 2011-08-05. The template grasps the reactants by hydrogen bonding at both ends as indicated below. The self-complementary “recipe” has been incorporated universally in self-replicating systems synthesized in other research groups.

Philip Ball in his book, Designing the Molecular World, argues that Rebek's self replicating molecules share some criteria with both nucleic acids and proteins and, moreover, “their replications operates according to novel kind of molecular interaction rather than mimicking the complementarity base pairing of nucleic acids. One could view this as an indication that perhaps DNA is not the sine qua none of life, so that one might conceive of organisms that "live" according to completely different molecular principles.” He suggests that Rebek has been able to pursue the idea of “molecular “evolution” by making artificial replicators that can be mutated. … The considerable excitement that has greeted Julius Rebek’s work is inspired in part by the possibilities that it raises for exploring the kind of chemical processes that led to the appearance of life on our planet.”

British ethologist Richard Dawkins in his book, River out of Eden, suggests that Rebek's replicating molecules “raise the possibility of other worlds having a parallel evolution but with a fundamentally different chemical basis."

Read more about this topic:  Julius Rebek