In geometry, a set of Johnson circles comprise three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections (points where at least two of them meet): the common point H that they all share, and for each of the three pairs of circles one more intersection point (referred here as their 2-wise intersection). If any two of the circles happen to just touch tangentially they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure.
Read more about Johnson Circles: Properties, Proofs, Further Properties
Famous quotes containing the words johnson and/or circles:
“I am proud to be a member of a party that opens its doors to all menand closes its hearts to none.”
—Lyndon Baines Johnson (19081973)
“Think of the wonderful circles in which our whole being moves and from which we cannot escape no matter how we try. The circler circles in these circles....”
—E.T.A.W. (Ernst Theodor Amadeus Wilhelm)