Jet (mathematics) - Jets of Sections

Jets of Sections

This subsection deals with the notion of jets of local sections a vector bundle. Almost everything in this section generalizes mutatis mutandis to the case of local sections of a fibre bundle, a Banach bundle over a Banach manifold, a fibered manifold, or quasi-coherent sheaves over schemes. Furthermore, these examples of possible generalizations are certainly not exhaustive.

Suppose that E is a finite-dimensional smooth vector bundle over a manifold M, with projection . Then sections of E are smooth functions such that is the identity automorphism of M. The jet of a section s over a neighborhood of a point p is just the jet of this smooth function from M to E at p.

The space of jets of sections at p is denoted by . Although this notation can lead to confusion with the more general jet spaces of functions between two manifolds, the context typically eliminates any such ambiguity.

Unlike jets of functions from a manifold to another manifold, the space of jets of sections at p carries the structure of a vector space inherited from the vector space structure on the sections themselves. As p varies over M, the jet spaces form a vector bundle over M, the k-th order jet bundle of E, denoted by Jk(E).

  • Example: The first-order jet bundle of the tangent bundle.
We work in local coordinates at a point. Consider a vector field
in a neighborhood of p in M. The 1-jet of v is obtained by taking the first-order Taylor polynomial of the coefficients of the vector field:
In the x coordinates, the 1-jet at a point can be identified with a list of real numbers . In the same way that a tangent vector at a point can be identified with the list (vi), subject to a certain transformation law under coordinate transitions, we have to know how the list is affected by a transition.
So let us consider the transformation law in passing to another coordinate system yi. Let wk be the coefficients of the vector field v in the y coordinates. Then in the y coordinates, the 1-jet of v is a new list of real numbers . Since
it follows that
So
Expanding by a Taylor series, we have
Note that the transformation law is second order in the coordinate transition functions.

Read more about this topic:  Jet (mathematics)

Famous quotes containing the word sections:

    I have a new method of poetry. All you got to do is look over your notebooks ... or lay down on a couch, and think of anything that comes into your head, especially the miseries.... Then arrange in lines of two, three or four words each, don’t bother about sentences, in sections of two, three or four lines each.
    Allen Ginsberg (b. 1926)