Jacobian Conjecture - The Jacobian Determinant

The Jacobian Determinant

Let N > 1 be a fixed integer and consider the polynomials f1, ..., fN in variables X1, ..., XN with coefficients in an algebraically closed field k (in fact, it suffices to assume k = C). Then we define a vector-valued function F: kNkN by setting:

F(c1, ..., cN) = (f1(c1), ..., fN(cN))

The Jacobian determinant of F, denoted by JF, is defined as the determinant of the N × N matrix consisting of the partial derivatives of fi with respect to Xj:

J_F = \left | \begin{matrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial X_1} & \cdots & \frac{\partial f_N}{\partial X_N} \end{matrix} \right |,

then JF is itself is a polynomial function of the N variables X1, …, XN.

Read more about this topic:  Jacobian Conjecture